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Diffusion in a fluctuating random geometry
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A theoretical analysis is presented of the self-diffusion of a particle in a disordered and fluctuating one-
dimensional geometry. A general result is obtained, showing how geometrical fluctuations enhance the rate of
diffusion measured in a laboratory-fixed frame. This result is relevant for understanding molecular transport in
certain complex fluids and biological systems. Explicit results are given for three different dynamic models,
illustrating how diffusion measurements can be used to extract information about the orientational distribution
and dynamics of segments of polymers or wormlike micelles in isotropic solutions and liquid-crystalline
phases[S1063-651X97)06401-5

PACS numbes): 61.25.Hq, 61.30.Eb, 66.10.Ch, 05.6Qv

I. INTRODUCTION long wormlike micelles and in hexagonal liquid crystals, dif-
fusion of water or ions through the aqueous channels in re-

Diffusion in disordered media has received considerablezersed hexagonal liquid crystals, and in certain microemul-
attention in recent years, mainly with a view to applicationssions, diffusion of an absorbed species along a polymer
in solid-state physic§1—3]. Much of this work focuses on chain in isotropic or nematic phases and along extended su-
diffusion with random transition rates and on anomalous dif-pramolecular biostructures.
fusion on percolation clusters and fractals. In the present We begin, in Sec. Il, by treating the case of a static cur-
work, we address a particular case of spatial disorderyilinear geometry(quenched disordgrfocusing on the role
namely, diffusion in a random geometry. Despite its funda-of spatial orientational correlations. Certain limiting forms of
mental nature and potential applications, this problem hathe general result of Sec. Il are then shown to reduce to
remained virtually unexplored. various known results for a random walk on a random walk

The motivation for our interest in the problem is as fol- [6], the stochastic Lorentz modgf], and the polymer repta-
lows. In complex fluids, such as self-assembled amphiphiletion model[8,9].
based systems of biological or synthetic origin, small mo- In Sec. Ill, we address the more general case of diffusion
lecular species can diffuse freely over interfaces or withinin a fluctuating curvilinear geometry. While a continuum de-
structures whose geometry fluctuates in space and time dweription was used in Sec. Il, the general case of Sec. Ill is
to thermal motion. A macroscopic self-diffusion experiment,more conveniently treated in terms of a discrete random-
e.g., using pulsed-gradient spin-echo NNUR® or fluores- walk model. The problem of obtaining the macroscopic dif-
cence recovery after photobleachihg], essentially mea- fusion coefficientD, is then equivalent to calculating the
sures the mean-square displacemdnt(t)), along a asymptotic mean-square displacement for a one-dimensional
laboratory-fixed axisX), or the corresponding long-time dif- symmetric random walk with a step length that fluctuates in

fusion coefficient time and space.
The general result foD, derived in Sec. Ill is applied in
D, = lim (x?(t))/2t. 1.2 Sec. IV to several models for the reorientational dynamics of
t—oo the curvilinear geometry, including the Rouse model of poly-

mer dynamicg9,10] and the viscoelastic continuum model
Our objective is to relate the measured laboratory-frame difof nematic director fluctuation§11,12. We conclude, in
fusion coefficientD, to the curvilinear diffusion coefficient Sec. V, with some remarks on possible applications and ex-
D, describing the diffusional motion of the mobile species intensions of the present theoretical results.
the curvilinear space defined by the microstructure of the
complex fluid. In general, the local orientation of the micro-
structure fluctuates in time. The measui2d then reflects
the equilibrium orientational statistics of the microstructure Consider a molecular speciéseferred to as the “par-
as well as its reorientational dynamics and hence can providicle” ) that diffuses freely along an unbounded, continuous
information about both these aspects of the system. In addspace curvereferred to as the “chain). The geometryor
tion, the relation betweel, and Dy is of interest in the configuration of a static chain defined by the parametric
study of material transport and chemical kinetics in complexequationr =r(s) can be specified by giving the orientation of
fluids and biological environments. the unit tangent vectan(s)=dr/ds as a function of the cur-

In the present work, we study a random curvilinear geomwilinear coordinates [13]. As the orientational variable, we
etry in one dimension, allowing exact analytical results to bechoose the projection af(s) on the laboratory-fixec axis
obtained. Real systems for which these results should be agalong which the macroscopic diffusion coefficiebt, is
plicable include diffusion of amphiphiles or solubilized hy- measurey i.e., {(s) =u(s) -x. The ¢ distribution may be iso-
drophobic species in isotropic and nematic phases of vertropic, as in a solution of long polymers or micelles, or an-

II. STATIC GEOMETRY
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wherefy(s,t) is the usual one-dimensional diffusion propa-
gator

fo(s,t)=(4nDg) Y2 exd —s%(4D4)]. (2.7

Combining Eqs(1.1), (2.4), (2.6), and(2.7) and noting that,
due to the homogeneity of the chain, the integrand in Eq.
(2.6) is an even function of, we obtain the desired result for
the case of a static chain

DX/DS=<§>2+w—”?nm(Dst)—?'/Zf ds
0

t—oo

S
xexp[—szl(4Dst)]f ds'(s—s’)g(s’).
0
FIG. 1. Schematic illustration ofa) an isotropic and(b) an
anisotropic system of polymer chains or wormlike micelles. (2.9

isotropic, as in a nematic or hexagonal liquid crystl Fig As long as the spatial correlation functigfs) decays with
1). The chain is taken to be homogeneous, i.e., its statistical’ a?2|t8)mur§tN|2 ﬁg{epggafa[[sggge;nvhf:ﬁ 'igti?rrr?l ifns/e”rgs
properties are translationally invariant in the curvilinear i (lt tHe igte ral OVes row)g more’ Slow ' tha m3/27coﬁse_
space. No other restrictions are imposed on the geometry o? 9 Ves di owly thai .

quently, spatial orientational correlations of finite range have

the chain, which, in general, is neither planar nor in a one- T . :
. i no effect on the macroscopic diffusion behavior. For a static
to-one correspondence with theaxis.

The net displacement(s) along thex axis corresponding chain, we thus have the simple result

to a given curvilinear displacemestalong the chain i$13] D, /Ds=(¢)2. 2.9
N For a static chain, the normal diffusion coefficient, as defined
x(s)—Jods £(sh), 2.1 by Eg. (1.1), thus vanishes in the isotropic limit, where

(9)=0. In this limit the mean-square displacememt(t))
so that grows asymptotically as'? so the projected motion is sub-
diffusive (cf. below.
PV R , " Despite its simplicity, Eq(2.9) is a nontrivial result. The
{x (s)}—jods fods’(g(s )4(s"), 22 effectively measured diffusion process is asymptotically
equivalent to a random walk with random step lengths. Even
where the angular brackets denote a statistical average ovéroughspatial correlations have no effect on the asymptotic
an ensemble of chain configurations. This reflects the fadtiffusion behavior,temporal correlations are essentigtf.
that the mean-square displacement obtained from a macr&ec. ll)). This is because a static chain exhibits quenched
scopic diffusion measurement is an average over a largdisorder; a step corresponding & a given “bond” in the
number of particles distributed over different chains and withchain is always of the same length. In contrast, for a random
different initial positions on the same chain. The homogenewalk with random step lengths but annealed disorder, the

ity of the chain implies that step length is determineal priori at the time of each jump.
In this case, one has instead of E2.9) the well-known[14]
(£(s")¢(8")=(£(0)¢(s"=s")), (2.3 resultD,/D=(¢? (cf. Sec. Il B.
) It is of some interest to examine the effect of spatial cor-
whereby Eq/(2.2) can be transformed into relations on the mean-square displacenfaftt)) at a finite

. time t. If the chain is locally stiff, the spatial correlation
<X2(S)>:<§>252+2f dS,(S_S,)g(S’), (24) function may be taken as
0

9(s)=[(® (0% exp(—[s|/N), (2.10
where we have introduced the spatial orientational correla-
tion function P with A the so-called deflection lengfii5]. In the isotropic

limit, Eq. (2.10 reduces to the orientational correlation func-
(s)=(£(0)¢(s))— ()2 (2.5  tion for the wormlike chain model, with. the persistence
J < )40 length[16]. The combination of Eqg2.4), (2.6), (2.7), and
The particle diffuses along the chain with a curvilinear (2.10 yields
self-diffusion coefficientD. Since this diffusion process is 2 2 ) ) 12
independent of the geometry of the chain, the mean-square (X)) =2 Dt +2[(£) —(H7IM(4Dgt/ )

displacement after a timecan be obtained as —\[1—expDgt/A)erf(VD/N) ]} (2.10)
X2(t :fw ds f(s,t)(X4(s)), 26 In the special case of an isotropic chain, wif=0 and
) _As JOX(s)) 29 (%=1, the asymptotic form of Eq2.11) becomes
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lim (x?(t)) = (4\/3)(D gt/ 7) Y2, (2.12 The net displacement projected on thexis afterN steps
t—o IS

which is the well-known result for the mean-square segment N

displacement for a polymer that reptates in a fixed isotropic X(N):Unzl &(n), (3.9

tube[8,9].

_ In the complete_ absence of spatial orientational Co”e'a\'/vhereg(n) is the projection, in units ofr, of the nth step
tion along the chain,

vector. Note that the sign @&{n) depends on the direction of
the step along the chain as well as on the orientation of the

9(s)=[(¢*) —()*]ad(s), (2.13 chain segment relative to theaxis. Obviously(&)=0 and
, (&)=().
which leads to The combination of Eq93.1)—(3.3) yields
() =2(5)*Det+[(¢?) —(¢)?1o (4Dt m) Y2, N-1
(2.19 D, /Dg=(3+2 lim >, (1-kIN)C(k), (3.9

N—o
To compare with previous work, we transform this result
from a continuous diffusion model to a discrete random walkwhere we have introduced the time correlation function
model with fixed step lengthr. With the correspondence

rules C(k)=(&(n)é(n+k)) (3.5
t—N7, Dg—o?/27, (2.195 and made use of the stationarity property t64k) depends

on the time differencé& but not on the absolute time The
we obtain in place of Eq2.14 normal diffusion law, With(XZ(N)> growing asymptotically

as N, emerges from the present model if the sEfiC(k)

(XA(N)Y a?=(O)>N+[{{® —(2)?](2N/ )2, convergeg3], in which case Eq(3.4) simplifies to
(2.16 .
This result has previously been derived for the one- D"/DS:<§2>+2;§1 C(k). (3.6

dimensional stochastic Lorentz mod&l. While not contrib-
uting to the diffusion coefficient, the second term in Eq.
(2.16) gives rise to a long-timéproportional tot ~*?) tail in
the velocity autocorrelation function for this model, a char
acteristic feature of quenched disordet. The special case 5 5 jinear combination of space-time correlation functions
of Eqg. (2.16 where { can adopt only values-1 and —1 g(a,k) of all possible @, where g(a,k) is the time-

(with equal probability has also been obtained as the asymp'dependent generalization tthe discrete analog pthe spa-
totic mean-square displacement for a “random walk on &ial correlation functiong(s) in Eq. (2.5, i.e.

random walk” [6]. [To obtain the generalization of Eq.

Since the random-walk statistics on the chain are indepen-
dent of the configuration and dynamics of the chain, it fol-
“lows that we can express the time correlation functiik)

(2.16) valid for arbitrarily smallN, the discrete version of the 9(a,k)=(£(0,0{(a,k)—({)* 3.7
Gaussian propagator in EQ.7) must be replaced by the
exact binomial distribution. As shown in Sec. Il for the case of a static chain, spatial
correlations of finite range do not affect the asymptotic
Ill. FLUCTUATING GEOMETRY mean-square displacemdior D,). This must clearly be the
case also for a fluctuating chain. In the absence of spatial
A. General result correlations,g(a,k) vanishes unles&=0 and, after some

Consider now the more general case where the local orireflection, one obtains
entation of the chain fluctuates not only in spdakng the

chain but also in time(at a given position along the chain - 2 (2k)!

Accordingly, we write for the unit tangent vecta(s,t). It Zkzl Clk= _9(0'1)+gl 4R(k!)?

appears to be simpler, however, to use a discrete random-

walk description(Since we are interested only in asymptotic X[9g(0,%k)—g(0,Xx+1)]. (3.8

properties, the choice of description is simply a matter of _ _ . _
mathematical conveniengélVe thus consider a particle that Introducing the reduced correlation functig(Ok), defined
jumps a distancer forward or backward along the chain at through

fixed time intervalsr. The correspondence rules are _ ) i~
9(0k)=g(0,0g(0k)=[(£%)—(£)°Ig(0k), (3.9

we obtain with Eqs(3.6) and(3.8) the desired general result

D, /Ds=(*)~[(£®—(£)?1[9(0,)—-T], (3.108

t—N7, s—ao, D—o?/27, (3.2
and Eq.(1.1) is replaced by

D,= lim (x?(N))/2N . (3.2
N —s o0 with
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1 —T— T timesk. Fluctuations in the segment orientation tend to de-
u i stroy this correlation, thereby increasing the diffusion coef-
08 L i ficient D, .
“ 06 - N C. Smoluchowski approach
Q
& -  Anncaled disorder - Further insight into the correlation effect can be obtained
04 - - by constructing the effective diffusion equation for the pro-
n - jected diffusion process. The curvilinear propagator /)
02 L Quenched disorder is the fundamental solutiofGreen’s functioh of the usual
N one-dimensional diffusion equation in the curvilinear coordi-
0 ] 1 1 1 1 1 1 1 nates,
0 0.2 04 0.6 0.8 1 P 52
<¢> —t fs(s)=Ds -5 fy(s/1). (3.12

FIG. 2. Bounds on the relative diffusion coefficiébi/D¢ ver- . . . . .
sus the degree of anisotrof) of the chain. For a given anisotropy, We restrict our attention here to a chain that is sufficiently

D,/Dy is bounded from below b{¢)? (quenched disordeand from  anisotropic that there is a one-to-one correspondence be-
above by(7? (annealed disordgrExcept for its limiting values of ~ tweens andx. Sincedx= {ds, it then follows that the effec-

1 and 1, the(?® curve depends on the shape of theistribution,  tive propagator for the projected diffusion process is given
taken here a$(?)xexplconsix?). by f,(x,t)=f¢(s,t)/{. Furthermore, sinces is a single-
valued function ofx, we can regard as a function ok and
transform Eq(3.12 into

_i (2k)! _
=2 2x2 [600.20-G(0.Xx+1)]. (3.108

J J J
— fx(x,t)=— D(x)exfd — ¢(x)] —— ex ¢(x) ]fx(x,t),
. . . . ot ax X

By measuring the macroscopic laboratory-frame diffusion (3.13
coefficientD, for a molecular species with known curvilin- ’
ear diffusion coefficienD, one can thus obtain information
about the orientational distribution of the chain segments a
well as about their reorientational dynamics.

which is a Smoluchowski equation with the effective nonuni-
form diffusion coefficientD(x) and the effective potential

@(X) given by

B. Limiting cases D(x)=DgZ?, (3.143
The simple results for the two limiting cases of a static
chain and a rapidly fluctuating chajguenched and annealed d(x)=In¢. (3.14b
disorder, respectivelyare easily recovered from the general
result EQ.(3.10. In the static chain limitg(0,k) =1 so that In the Smoluchowski picture, the retarding effect of cor-

I'=0 and Eq.(3.109 reduces to Eq(2.9), as required. If  relations can be viewed as a result of trapping of the particle
chain-segment reorientation is much faster than curvilineaj, potential wells with a small local diffusion coefficient at
diffusion over the length of the segment, thgf0k)=0 so  segments that make a large angle withxtexis (small ). It
thatI'=0 again and Eq(3.104 reduces to may be noted that the result EQ.9) for the static chain can

D, /D.=(?) (3.11) be derived also from Ed3.13 uging the_ mean-fir_st-pas_sage-

x'=s ’ : time method[17] or the equivalent(in one dimension

L . steady-state flux methdd 8]. The derivations presented in
which is the well-known result for a symmetric random walk gacs “11 and 111 are more general, however, since they do not
with variable step length but with no correlation between therequire a one-to-one correspondence betweemdx, i.e.,

lengths of different step§l4]. Since({)=()? it follows they allow the chain to fold back on itself.
that chain fluctuations tend to increase the laboratory-frame

diffusion coefficientD, . The two limiting results are plotted
in Fig. 2 versus the degree of anisotropy of the chain. For IV. DYNAMIC MODELS
this plot, the relation betwee(#) and(Z?) is fixed by assum-
ing that the aligning potential of mean torque is proportional
to —¢. The difference between the two boundsbpis, of
course, largest in the isotropic limit, wheteis uniformly

To obtain explicit results for the effect of chain dynamics
on the diffusion coefficienD,, the reduced time correlation
functiong(0,k) entering in Eq.(3.10 must be specified. To
this end we shall examine three different dynamic models.

distributed.
In a static chain, the projected step length is always the
same for a given chain segment even if there are no correla- A. Exchange model

tions between the projected step lengths of different chain |n the simplest model, the orientational correlation decays
segments. Since the diffusing particle returns repeatédly exponentially,

fact, infinitely many timesto any chain segment, this in-
duces a temporal correlation that contribute<Ctk) at all 9(0k)=exp(—k7/ 7). 4.1
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FIG. 3. Variation of the relative diffusion coefficiebt,/D for
the exchange model, with, the mean residence time of the diffus-
ing particle on a given chain. The solid curve is the exact result Eq
(4.2), while the broken curve is the approximate result Eg4).
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with

TC=0'2/(37T2DC), 4.7

D. being the translational diffusion coefficient of a chain
segment of lengtho. In terms of normal coordinates, the
orientational time correlation function in E¢3.7) becomes

N
g(o,lo=[2772/(o-2NZ>]p§1 pXX(p,0X(p,k)). (4.8

Combination of Eqs(4.6) and (4.8) yields, for the reduced
correlation function,

_ 1 o krp?| 7 erfl(kr/ 7o)
G0K=5 2, eXP(‘—N)”TWW—
(4.9

where, in the second step, we have approximated the sum by
an integral. At short timeskir<7.), Eq.(4.9) reduces to the

This model might represent exchange of the diffusing mo-£xponential decay of E¢4.1). Atlong times k7> 7¢), how-

lecular species between different chains, with a mean res
dence timer; on a given(statio chain. With Eq.(3.10 we
obtain

Dy /Ds=(Z?) ~[{})—(O)*Iexp( — /7o) —T'],

(4.23
“(2k)!
r=[1—exp(—7/fc)]k§=)1 Zk(k—!)zexp(—zkr/rc).
(4.2

Using Stirling’s formula,n! = (27n)*’n"exp(—n), and re-
placing the sum by an integral, we can approxinmiatey

I'=[1—exp — 7/7)](27 7o) Y2erf[ (27 7¢) Y.
(4.3

When <7, we can expand Eq$4.23 and(4.3), obtaining
for the isotropic case

D,/Dg=3(71275)*? (4.4)
or, in view of Eq.(3.1),
D,=(0/12)(Dg/ 7)Y (4.5

Here o should be interpreted as the persistence length of th
chain. In Fig. 3 we show, for the isotropic case, hby/ D
varies from 0 toi with increasing “persistence time”
r=0%(2D,) or decreasing residence timg. The slow ap-
proach to the static limit is noteworthy. Wit ~10"1°

m?s %, ¢=~30 nm, andr, a few microseconds, parameters

typical for wormlike micelles, one hasr, of order 1.

B. Rouse model

In the Rouse model for the dynamics of a Gaussian chai
in an isotropic system, the time correlation function for the
normal coordinates ig9,10]

(X(p,0)X(p,k)) =[0®N/ (6 m2p?)Jexd —k7p?/(7cN?)],
(4.6

gver, Eq.(4.9 exhibits a slowly decaying tail of the form
[ 77 (k)] Y2

The macroscopic diffusion coefficieBt, for an isotropic
chain with Rouse dynamics is obtained by substituting Eq.
(4.9 into Eqg.(3.10. A highly accurate closed-form approxi-
mation to this result is obtained by invoking Stirling’s for-
mula and converting the sum in E¢B.10b to an integral,
whereby

1 erf(\n/2) erf
b./D.~1 L Nmefn2)  erf\n)

3 2 2 8\7n
V7 exp(— 7)

+ — erf -, 4.1
7 erfen - — = (4.10

with »=27/7,. For 7<7, this expression reduces to

D,/D¢=&(7/27) Y2, (4.11

which is one-half of the corresponding result E4.4) for
the exchange model. In view of E(8.1) and(4.7), this may
be expressed as

Dy Do), (4.12

"
v 0
ghowing that the macroscopic diffusion coefficiént is es-
sentially the geometric mean of the curvilinear diffusion co-
efficient D¢ and the chain segment diffusion coefficiéng.
Figure 4 shows hov, varies with7/ 7, for the Rouse model
and also illustrates the accuracy of the approximations EQs.
(4.10 and(4.11). A comparison with Fig. 3 shows that the
fast fluctuation limit is approached more slowly, as indeed
expected for the distribution of orientational fluctuation
modes in the Rouse model.

n

C. Nematic model
Finally, consider an anisotropic system of strongly

coupled chains, whose collective reorientational dynamics
can be described by the usual continuum mechanics of liquid
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FIG. 4. Variation of the relative diffusion coefficieBx,/D for FIG. 5. Variation of the relative diffusion coefficieBt,/D for

the Rouse model, with; the correlation time for segment motion. ha nematic model, with, the viscoelastic cutoff time. Even for a
The solid curve is the exact result Eq8.10 and(4.9), while the o atic order paramet&ras low as 0.5, the variation &, due to
circles represent the approximate result 410 and the broken irector fluctuations is seen to be less than 5%.

curve the approximate result E@L.11).

o ) At short times k7<), EQ.(4.18 reduces to an exponential
crystals[l;,lZ. This might be a nematic phgse of polymers decay exp—2k7/7.), while at long times K> ) it exhib-
or long micelles. The laboratory-fixed axis is taken to be s a slow algebraic decaytr./(4kr). Furthermore, it fol-
along the optigsymmetry axis of the uniaxial phase and the |ows from the preceding results that

chain tangent defines the so-called local directd2].

In the theory of nematic director fluctuations, one focuses (?)=(1+29)/3, (4.193
not on the longitudinal componetit-u-X but on a transverse
componenp=u-y of the local director. The time correlation (L3 —(0)?*=[(1-9)/3]% (4.19h
function for either of the two independent Cartesian trans- o o ]
verse director components [is1] The macroscopic diffusion coefficieft, for a particle on a

chain undergoing nematic director fluctuations is now ob-
 erfl (ke 7)Y tained by substituting Eq$4.18 and(4.19 into Eq.(3.10,
<p(0)p(k)>=<P2>g%m—2]: (4.13
e  {erfl (/7))

D,/D=(1+2S)/3—[(1—9)/3]?

_F}

with the viscoelastic cutoff time 4 7l 7e
(4.209
Te=nlKdZ, 4.1
e 7R (419 T 7o e (2K [{erf (2kr/ 7o) Y))2
K being the(average curvature elasticity of the phasg,the I'= 4 1 & 4kK)? 2k
nematic viscosity, and.=2m/\, with A, the cutoff length
below which the continuum description fails. Thysis the (erf{[(2k+1) 7/ 7c]*2})?
relaxation time for a director fluctuation mode of wavelength N 2k+1 (4.200

e
The mean-square fluctuation amplitug®) in Eq. (4.13 Figure 5 shows howD, varies with 77, for the nematic
is related to the usual second-rank nematic order parametanodel. The shape of the curve is the same for all valué& of

although the limiting values are different. For a highly or-
S=(3(H-1)2 (4.19  dered nematic phasB, is of course insensitive to the direc-

tor fluctuation dynamicscf. Fig. 2.
as

<p2>:(1—<§2>)/2=(1—8)/3. (4.16 V. CONCLUDING REMARKS

In the present work, we have examined theoretically the
If p(k) is treated as a Gaussian random process, the orientgelf-diffusion of a particle in a disordered one-dimensional
tional time correlation function in Eq3.7) becomes, to lead- geometry that fluctuates in time. Whereas spatial correlations
ing order inp [19], of finite range have no effect on the projected diffusion co-
) efficient D,, temporal correlations are seen to be crucial.
g(0k)=(p(0)p(k))*. (417 our principal result Eq(3.10 demonstrates how, on increas-
ing the rate of orientational fluctuations, the raflQ/D of
the projzected 2and curvilinear diffusion coefficients increases
from ({)“ to ().
w {erf (kr/ 7o) Y]} 4.18 In view of the wide applicability of diffusion and random-
4 k7l 7 ' ' walk models, the present results may be useful in a variety of

The reduced correlation function thus becomes

g(0k)=
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contexts. In particular, they allow experimental diffusion micelles. At higher concentrations, other processes, such as
data from solutions of polymers and wormlike micelles andchain reptation[20] and topological rearrangemenfg1],

from amphiphilic nematic or hexagonal liquid crystals to bemay need to be incorporated in the dynamic model.
analyzed in terms of the orientational distribution and dy- While there are undoubtedly interesting applications of
namics of the polymers or amphiphilic aggregates. As illusthe present 1D results, the field of applications may be wider
trations of pOtential applications of this kind, we obtained inin the 2D case. In contrast to the present exact resu":s’ ap-

Sec. IV explicit results fob,/D for three different dynamic  proximate methods must be used to treat diffusion on a ran-
models. When the chain dynamics are slower than the curvidom surfacg22].

linear diffusion ©.<Dy), we found that the measured dif-
fusion coefficienD, is essentially the geometric meanf
andD;. More elaborate dynamic models may be needed to
describe real systems. For example, the exchange and Rouse
models may be combined to incorporate the effect of am- This work was supported by the Swedish Natural Science
phiphile exchange in a relatively dilute solution of wormlike Research Council.
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