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Diffusion in a fluctuating random geometry

Bertil Halle and Stefan Gustafsson
Condensed Matter Magnetic Resonance Group, Department of Chemistry, Lund University, P.O. Box 124, S-22100 Lund, Sw

~Received 17 July 1996!

A theoretical analysis is presented of the self-diffusion of a particle in a disordered and fluctuating one-
dimensional geometry. A general result is obtained, showing how geometrical fluctuations enhance the rate of
diffusion measured in a laboratory-fixed frame. This result is relevant for understanding molecular transport in
certain complex fluids and biological systems. Explicit results are given for three different dynamic models,
illustrating how diffusion measurements can be used to extract information about the orientational distribution
and dynamics of segments of polymers or wormlike micelles in isotropic solutions and liquid-crystalline
phases.@S1063-651X~97!06401-5#

PACS number~s!: 61.25.Hq, 61.30.Eb, 66.10.Cb, 05.60.1w
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I. INTRODUCTION

Diffusion in disordered media has received considera
attention in recent years, mainly with a view to applicatio
in solid-state physics@1–3#. Much of this work focuses on
diffusion with random transition rates and on anomalous
fusion on percolation clusters and fractals. In the pres
work, we address a particular case of spatial disord
namely, diffusion in a random geometry. Despite its fund
mental nature and potential applications, this problem
remained virtually unexplored.

The motivation for our interest in the problem is as fo
lows. In complex fluids, such as self-assembled amphiph
based systems of biological or synthetic origin, small m
lecular species can diffuse freely over interfaces or wit
structures whose geometry fluctuates in space and time
to thermal motion. A macroscopic self-diffusion experime
e.g., using pulsed-gradient spin-echo NMR@4# or fluores-
cence recovery after photobleaching@5#, essentially mea-
sures the mean-square displacement^x2(t)&, along a
laboratory-fixed axis (x), or the corresponding long-time dif
fusion coefficient

Dx5 lim
t→`

^x2~ t !&/2t. ~1.1!

Our objective is to relate the measured laboratory-frame
fusion coefficientDx to the curvilinear diffusion coefficien
Ds describing the diffusional motion of the mobile species
the curvilinear space defined by the microstructure of
complex fluid. In general, the local orientation of the micr
structure fluctuates in time. The measuredDx then reflects
the equilibrium orientational statistics of the microstructu
as well as its reorientational dynamics and hence can pro
information about both these aspects of the system. In a
tion, the relation betweenDx and Ds is of interest in the
study of material transport and chemical kinetics in comp
fluids and biological environments.

In the present work, we study a random curvilinear geo
etry in one dimension, allowing exact analytical results to
obtained. Real systems for which these results should be
plicable include diffusion of amphiphiles or solubilized h
drophobic species in isotropic and nematic phases of v
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long wormlike micelles and in hexagonal liquid crystals, d
fusion of water or ions through the aqueous channels in
versed hexagonal liquid crystals, and in certain microem
sions, diffusion of an absorbed species along a polym
chain in isotropic or nematic phases and along extended
pramolecular biostructures.

We begin, in Sec. II, by treating the case of a static c
vilinear geometry~quenched disorder!, focusing on the role
of spatial orientational correlations. Certain limiting forms
the general result of Sec. II are then shown to reduce
various known results for a random walk on a random w
@6#, the stochastic Lorentz model@7#, and the polymer repta
tion model@8,9#.

In Sec. III, we address the more general case of diffus
in a fluctuating curvilinear geometry. While a continuum d
scription was used in Sec. II, the general case of Sec. II
more conveniently treated in terms of a discrete rando
walk model. The problem of obtaining the macroscopic d
fusion coefficientDx is then equivalent to calculating th
asymptotic mean-square displacement for a one-dimensi
symmetric random walk with a step length that fluctuates
time and space.

The general result forDx derived in Sec. III is applied in
Sec. IV to several models for the reorientational dynamics
the curvilinear geometry, including the Rouse model of po
mer dynamics@9,10# and the viscoelastic continuum mod
of nematic director fluctuations@11,12#. We conclude, in
Sec. V, with some remarks on possible applications and
tensions of the present theoretical results.

II. STATIC GEOMETRY

Consider a molecular species~referred to as the ‘‘par-
ticle’’ ! that diffuses freely along an unbounded, continuo
space curve~referred to as the ‘‘chain’’!. The geometry~or
configuration! of a static chain defined by the parametr
equationr5r (s) can be specified by giving the orientation
the unit tangent vectoru(s)5dr /ds as a function of the cur-
vilinear coordinates @13#. As the orientational variable, we
choose the projection ofu(s) on the laboratory-fixedx axis
~along which the macroscopic diffusion coefficientDx is
measured!, i.e.,z(s)5u(s)•x̂. Thez distribution may be iso-
tropic, as in a solution of long polymers or micelles, or a
680 © 1997 The American Physical Society
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55 681DIFFUSION IN A FLUCTUATING RANDOM GEOMETRY
isotropic, as in a nematic or hexagonal liquid crystal~cf. Fig.
1!. The chain is taken to be homogeneous, i.e., its statis
properties are translationally invariant in the curviline
space. No other restrictions are imposed on the geometr
the chain, which, in general, is neither planar nor in a o
to-one correspondence with thex axis.

The net displacementx(s) along thex axis corresponding
to a given curvilinear displacements along the chain is@13#

x~s!5E
0

s

ds8z~s8!, ~2.1!

so that

^x2~s!&5E
0

s

ds8E
0

s

ds9^z~s8!z~s9!&, ~2.2!

where the angular brackets denote a statistical average
an ensemble of chain configurations. This reflects the
that the mean-square displacement obtained from a ma
scopic diffusion measurement is an average over a la
number of particles distributed over different chains and w
different initial positions on the same chain. The homoge
ity of the chain implies that

^z~s8!z~s9!&5^z~0!z~s92s8!&, ~2.3!

whereby Eq.~2.2! can be transformed into

^x2~s!&5^z&2s212E
0

s

ds8~s2s8!g~s8!, ~2.4!

where we have introduced the spatial orientational corr
tion function

g~s!5^z~0!z~s!&2^z&2. ~2.5!

The particle diffuses along the chain with a curviline
self-diffusion coefficientDs . Since this diffusion process i
independent of the geometry of the chain, the mean-sq
displacement after a timet can be obtained as

^x2~ t !&5E
2`

`

ds fs~s,t !^x
2~s!&, ~2.6!

FIG. 1. Schematic illustration of~a! an isotropic and~b! an
anisotropic system of polymer chains or wormlike micelles.
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where f s(s,t) is the usual one-dimensional diffusion prop
gator

f s~s,t !5~4pDst !
21/2 exp@2s2/~4Dst !#. ~2.7!

Combining Eqs.~1.1!, ~2.4!, ~2.6!, and~2.7! and noting that,
due to the homogeneity of the chain, the integrand in
~2.6! is an even function ofs, we obtain the desired result fo
the case of a static chain

Dx /Ds5^z&21p21/2lim
t→`

~Dst !
23/2E

0

`

ds

3exp@2s2/~4Dst !#E
0

s

ds8~s2s8!g~s8!.

~2.8!

As long as the spatial correlation functiong(s) decays with
s, as it must in any physical system, the integral overs8 in
Eq. ~2.8! grows more slowly thans2, which, in turn, implies
that the integral overs grows more slowly thant3/2. Conse-
quently, spatial orientational correlations of finite range ha
no effect on the macroscopic diffusion behavior. For a sta
chain, we thus have the simple result

Dx /Ds5^z&2. ~2.9!

For a static chain, the normal diffusion coefficient, as defin
by Eq. ~1.1!, thus vanishes in the isotropic limit, wher
^z&50. In this limit the mean-square displacement^x2(t)&
grows asymptotically ast1/2, so the projected motion is sub
diffusive ~cf. below!.

Despite its simplicity, Eq.~2.9! is a nontrivial result. The
effectively measured diffusion process is asymptotica
equivalent to a random walk with random step lengths. Ev
thoughspatial correlations have no effect on the asympto
diffusion behavior,temporal correlations are essential~cf.
Sec. III!. This is because a static chain exhibits quench
disorder; a step corresponding to a a given ‘‘bond’’ in the
chain is always of the same length. In contrast, for a rand
walk with random step lengths but annealed disorder,
step length is determineda priori at the time of each jump
In this case, one has instead of Eq.~2.9! the well-known@14#
resultDx/Ds5^z2& ~cf. Sec. III B!.

It is of some interest to examine the effect of spatial c
relations on the mean-square displacement^x2(t)& at a finite
time t. If the chain is locally stiff, the spatial correlatio
function may be taken as

g~s!5@^z2&2^z&2#exp~2usu/l!, ~2.10!

with l the so-called deflection length@15#. In the isotropic
limit, Eq. ~2.10! reduces to the orientational correlation fun
tion for the wormlike chain model, withl the persistence
length @16#. The combination of Eqs.~2.4!, ~2.6!, ~2.7!, and
~2.10! yields

^x2~ t !&52^z&2Dst12@^z2&2^z&2#l$~4Dst/p!1/2

2l@12exp~Dst/l
2!erfc~ADst/l!#%. ~2.11!

In the special case of an isotropic chain, with^z&50 and
^z2&51

3, the asymptotic form of Eq.~2.11! becomes
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682 55BERTIL HALLE AND STEFAN GUSTAFSSON
lim
t→`

^x2~ t !&5~4l/3!~Dst/p!1/2, ~2.12!

which is the well-known result for the mean-square segm
displacement for a polymer that reptates in a fixed isotro
tube @8,9#.

In the complete absence of spatial orientational corre
tion along the chain,

g~s!5@^z2&2^z&2#sd~s!, ~2.13!

which leads to

^x2~ t !&52^z&2Dst1@^z2&2^z&2#s~4Dst/p!1/2.
~2.14!

To compare with previous work, we transform this res
from a continuous diffusion model to a discrete random w
model with fixed step lengths. With the correspondenc
rules

t→Nt, Ds→s2/2t, ~2.15!

we obtain in place of Eq.~2.14!

^x2~N!&/s25^z&2N1@^z2&2^z&2#~2N/p!1/2.
~2.16!

This result has previously been derived for the on
dimensional stochastic Lorentz model@7#. While not contrib-
uting to the diffusion coefficient, the second term in E
~2.16! gives rise to a long-time~proportional tot23/2! tail in
the velocity autocorrelation function for this model, a cha
acteristic feature of quenched disorder@7#. The special case
of Eq. ~2.16! where z can adopt only values11 and21
~with equal probability! has also been obtained as the asym
totic mean-square displacement for a ‘‘random walk on
random walk’’ @6#. @To obtain the generalization of Eq
~2.16! valid for arbitrarily smallN, the discrete version of the
Gaussian propagator in Eq.~2.7! must be replaced by th
exact binomial distribution.#

III. FLUCTUATING GEOMETRY

A. General result

Consider now the more general case where the local
entation of the chain fluctuates not only in space~along the
chain! but also in time~at a given position along the chain!.
Accordingly, we write for the unit tangent vectoru(s,t). It
appears to be simpler, however, to use a discrete rand
walk description.~Since we are interested only in asympto
properties, the choice of description is simply a matter
mathematical convenience.! We thus consider a particle tha
jumps a distances forward or backward along the chain
fixed time intervalst. The correspondence rules are

t→Nt, s→as, Ds→s2/2t, ~3.1!

and Eq.~1.1! is replaced by

Dx5 lim
N→`

^x2~N!&/2Nt. ~3.2!
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The net displacement projected on thex axis afterN steps
is

x~N!5s (
n51

N

j~n!, ~3.3!

wherej(n) is the projection, in units ofs, of the nth step
vector. Note that the sign ofj(n) depends on the direction o
the step along the chain as well as on the orientation of
chain segment relative to thex axis. Obviously,̂ j&50 and
^j2&5^z2&.

The combination of Eqs.~3.1!–~3.3! yields

Dx /Ds5^z2&12 lim
N→`

(
k51

N21

~12k/N!C~k!, ~3.4!

where we have introduced the time correlation function

C~k!5^j~n!j~n1k!& ~3.5!

and made use of the stationarity property thatC(k) depends
on the time differencek but not on the absolute timen. The
normal diffusion law, with^x2(N)& growing asymptotically
asN, emerges from the present model if the sum(1

`C(k)
converges@3#, in which case Eq.~3.4! simplifies to

Dx /Ds5^z2&12(
k51

`

C~k!. ~3.6!

Since the random-walk statistics on the chain are indep
dent of the configuration and dynamics of the chain, it f
lows that we can express the time correlation functionC(k)
as a linear combination of space-time correlation functio
g(a,k) of all possible a, where g(a,k) is the time-
dependent generalization of~the discrete analog of! the spa-
tial correlation functiong(s) in Eq. ~2.5!, i.e.,

g~a,k!5^z~0,0!z~a,k!&2^z&2. ~3.7!

As shown in Sec. II for the case of a static chain, spa
correlations of finite range do not affect the asympto
mean-square displacement~or Dx!. This must clearly be the
case also for a fluctuating chain. In the absence of spa
correlations,g(a,k) vanishes unlessa50 and, after some
reflection, one obtains

2(
k51

`

C~k!52g~0,1!1 (
k51

`
~2k!!

4k~k! !2

3@g~0,2k!2g~0,2k11!#. ~3.8!

Introducing the reduced correlation functiong̃(0,k), defined
through

g~0,k!5g~0,0!g̃~0,k!5@^z2&2^z&2#g̃~0,k!, ~3.9!

we obtain with Eqs.~3.6! and~3.8! the desired general resu

Dx /Ds5^z2&2@^z2&2^z&2#@ g̃~0,1!2G#, ~3.10a!

with



io
-
n
a

tic
d
a

ea

lk
th

m

Fo

na

th
e
a

-

e-
ef-

ed
o-

di-

tly
be-

en

ni-
l

r-
icle
t

e-

n
not

cs

s.

ys

,

55 683DIFFUSION IN A FLUCTUATING RANDOM GEOMETRY
G5 (
k51

`
~2k!!

4k~k! !2
@ g̃~0,2k!2g̃~0,2k11!#. ~3.10b!

By measuring the macroscopic laboratory-frame diffus
coefficientDx for a molecular species with known curvilin
ear diffusion coefficientDs , one can thus obtain informatio
about the orientational distribution of the chain segments
well as about their reorientational dynamics.

B. Limiting cases

The simple results for the two limiting cases of a sta
chain and a rapidly fluctuating chain~quenched and anneale
disorder, respectively! are easily recovered from the gener
result Eq.~3.10!. In the static chain limit,g̃(0,k)51 so that
G50 and Eq.~3.10a! reduces to Eq.~2.9!, as required. If
chain-segment reorientation is much faster than curvilin
diffusion over the length of the segment, theng̃(0,k)50 so
thatG50 again and Eq.~3.10a! reduces to

Dx /Ds5^z2&, ~3.11!

which is the well-known result for a symmetric random wa
with variable step length but with no correlation between
lengths of different steps@14#. Since ^z2&>^z&2, it follows
that chain fluctuations tend to increase the laboratory-fra
diffusion coefficientDx . The two limiting results are plotted
in Fig. 2 versus the degree of anisotropy of the chain.
this plot, the relation between̂z& and^z2& is fixed by assum-
ing that the aligning potential of mean torque is proportio
to 2z. The difference between the two bounds onDx is, of
course, largest in the isotropic limit, wherez is uniformly
distributed.

In a static chain, the projected step length is always
same for a given chain segment even if there are no corr
tions between the projected step lengths of different ch
segments. Since the diffusing particle returns repeatedly~in
fact, infinitely many times! to any chain segment, this in
duces a temporal correlation that contributes toC(k) at all

FIG. 2. Bounds on the relative diffusion coefficientDx/Ds ver-
sus the degree of anisotropy^z& of the chain. For a given anisotropy
Dx/Ds is bounded from below bŷz&2 ~quenched disorder! and from
above by^z2& ~annealed disorder!. Except for its limiting values of
1
3 and 1, thê z2& curve depends on the shape of thez distribution,
taken here asf ~z!}exp~const3z!.
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timesk. Fluctuations in the segment orientation tend to d
stroy this correlation, thereby increasing the diffusion co
ficient Dx .

C. Smoluchowski approach

Further insight into the correlation effect can be obtain
by constructing the effective diffusion equation for the pr
jected diffusion process. The curvilinear propagator Eq.~2.7!
is the fundamental solution~Green’s function! of the usual
one-dimensional diffusion equation in the curvilinear coor
nates,

]

]t
f s~s,t !5Ds

]2

]s2
f s~s,t !. ~3.12!

We restrict our attention here to a chain that is sufficien
anisotropic that there is a one-to-one correspondence
tweens andx. Sincedx5zds, it then follows that the effec-
tive propagator for the projected diffusion process is giv
by f x(x,t)5 f s(s,t)/z. Furthermore, sinces is a single-
valued function ofx, we can regardz as a function ofx and
transform Eq.~3.12! into

]

]t
f x~x,t !5

]

]x
D~x!exp@2f~x!#

]

]x
exp@f~x!# f x~x,t !,

~3.13!

which is a Smoluchowski equation with the effective nonu
form diffusion coefficientD(x) and the effective potentia
f(x) given by

D~x!5Dsz
2, ~3.14a!

f~x!5 lnz. ~3.14b!

In the Smoluchowski picture, the retarding effect of co
relations can be viewed as a result of trapping of the part
in potential wells with a small local diffusion coefficient a
segments that make a large angle with thex axis ~smallz!. It
may be noted that the result Eq.~2.9! for the static chain can
be derived also from Eq.~3.13! using the mean-first-passag
time method @17# or the equivalent~in one dimension!
steady-state flux method@18#. The derivations presented i
Secs. II and III are more general, however, since they do
require a one-to-one correspondence betweens and x, i.e.,
they allow the chain to fold back on itself.

IV. DYNAMIC MODELS

To obtain explicit results for the effect of chain dynami
on the diffusion coefficientDx , the reduced time correlation
function g̃(0,k) entering in Eq.~3.10! must be specified. To
this end we shall examine three different dynamic model

A. Exchange model

In the simplest model, the orientational correlation deca
exponentially,

g̃~0,k!5exp~2kt/tc!. ~4.1!
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684 55BERTIL HALLE AND STEFAN GUSTAFSSON
This model might represent exchange of the diffusing m
lecular species between different chains, with a mean r
dence timetc on a given~static! chain. With Eq.~3.10! we
obtain

Dx /Ds5^z2&2@^z2&2^z&2#@exp~2t/tc!2G#,
~4.2a!

G5@12exp~2t/tc!#(
k51

`
~2k!!

4k~k! !2
exp~22kt/tc!.

~4.2b!

Using Stirling’s formula,n!5(2pn)1/2nnexp~2n!, and re-
placing the sum by an integral, we can approximateG by

G5@12exp~2t/tc!#~2t/tc!
21/2erf@~2t/tc!

1/2#.
~4.3!

Whent!tc , we can expand Eqs.~4.2a! and~4.3!, obtaining
for the isotropic case

Dx /Ds5
1
3 ~t/2tc!

1/2 ~4.4!

or, in view of Eq.~3.1!,

Dx5~s/12!~Ds /tc!
1/2. ~4.5!

Heres should be interpreted as the persistence length of
chain. In Fig. 3 we show, for the isotropic case, howDx/Ds
varies from 0 to 1

3 with increasing ‘‘persistence time’
t5s2/(2Ds) or decreasing residence timetc . The slow ap-
proach to the static limit is noteworthy. WithDs'10210

m2 s21, s'30 nm, andtc a few microseconds, paramete
typical for wormlike micelles, one hast/tc of order 1.

B. Rouse model

In the Rouse model for the dynamics of a Gaussian ch
in an isotropic system, the time correlation function for t
normal coordinates is@9,10#

^x̂~p,0!x̂~p,k!&5@s2N/~6p2p2!#exp@2ktp2/~tcN
2!#,

~4.6!

FIG. 3. Variation of the relative diffusion coefficientDx/Ds for
the exchange model, withtc the mean residence time of the diffu
ing particle on a given chain. The solid curve is the exact result
~4.2!, while the broken curve is the approximate result Eq.~4.4!.
-
i-

e

in

with

tc5s2/~3p2Dc!, ~4.7!

Dc being the translational diffusion coefficient of a cha
segment of lengths. In terms of normal coordinates, th
orientational time correlation function in Eq.~3.7! becomes

g~0,k!5@2p2/~s2N2!# (
p51

N

p2^x̂~p,0!x̂~p,k!&. ~4.8!

Combination of Eqs.~4.6! and ~4.8! yields, for the reduced
correlation function,

g̃~0,k!5
1

N (
p51

N

expS 2
ktp2

tcN
2D'

Ap

2

erf@~kt/tc!
1/2#

~kt/tc!
1/2 ,

~4.9!

where, in the second step, we have approximated the sum
an integral. At short times (kt!tc), Eq. ~4.9! reduces to the
exponential decay of Eq.~4.1!. At long times (kt@tc), how-
ever, Eq.~4.9! exhibits a slowly decaying tail of the form
[ptc/(4kt)] 1/2.

The macroscopic diffusion coefficientDx for an isotropic
chain with Rouse dynamics is obtained by substituting E
~4.9! into Eq.~3.10!. A highly accurate closed-form approx
mation to this result is obtained by invoking Stirling’s fo
mula and converting the sum in Eq.~3.10b! to an integral,
whereby

Dx /Ds5
1

3 H 12
Ap

2

erf~Ah/2!

Ah/2
1
erf~Ah!

8Ah

1
Ah

4
erfc~Ah!2

exp~2h!

4Ap
J , ~4.10!

with h52t/tc . For t!tc , this expression reduces to

Dx /Ds5
1
6 ~t/2tc!

1/2, ~4.11!

which is one-half of the corresponding result Eq.~4.4! for
the exchange model. In view of Eqs.~3.1! and~4.7!, this may
be expressed as

Dx5
p

4)
~DsDc!

1/2, ~4.12!

showing that the macroscopic diffusion coefficientDx is es-
sentially the geometric mean of the curvilinear diffusion c
efficientDs and the chain segment diffusion coefficientDc .
Figure 4 shows howDx varies witht/tc for the Rouse mode
and also illustrates the accuracy of the approximations E
~4.10! and ~4.11!. A comparison with Fig. 3 shows that th
fast fluctuation limit is approached more slowly, as inde
expected for the distribution of orientational fluctuatio
modes in the Rouse model.

C. Nematic model

Finally, consider an anisotropic system of strong
coupled chains, whose collective reorientational dynam
can be described by the usual continuum mechanics of liq

q.
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55 685DIFFUSION IN A FLUCTUATING RANDOM GEOMETRY
crystals@11,12#. This might be a nematic phase of polyme
or long micelles. The laboratory-fixedx axis is taken to be
along the optic~symmetry! axis of the uniaxial phase and th
chain tangentu defines the so-called local director@12#.

In the theory of nematic director fluctuations, one focus
not on the longitudinal componentz5u•x̂ but on a transverse
componentr5u•ŷ of the local director. The time correlatio
function for either of the two independent Cartesian tra
verse director components is@11#

^r~0!r~k!&5^r2&
Ap

2

erf@~kt/tc!
1/2#

~kt/tc!
1/2 , ~4.13!

with the viscoelastic cutoff time

tc5h/Kqc
2, ~4.14!

K being the~average! curvature elasticity of the phase,h the
nematic viscosity, andqc52p/lc , with lc the cutoff length
below which the continuum description fails. Thustc is the
relaxation time for a director fluctuation mode of waveleng
lc .

The mean-square fluctuation amplitude^r2& in Eq. ~4.13!
is related to the usual second-rank nematic order param

S5~3^z2&21!/2 ~4.15!

as

^r2&5~12^z2&!/25~12S!/3. ~4.16!

If r(k) is treated as a Gaussian random process, the orie
tional time correlation function in Eq.~3.7! becomes, to lead
ing order inr @19#,

g~0,k!5^r~0!r~k!&2. ~4.17!

The reduced correlation function thus becomes

g̃~0,k!5
p

4

$erf@~kt/tc!
1/2#%2

kt/tc
. ~4.18!

FIG. 4. Variation of the relative diffusion coefficientDx/Ds for
the Rouse model, withtc the correlation time for segment motion
The solid curve is the exact result Eqs.~3.10! and ~4.9!, while the
circles represent the approximate result Eq.~4.10! and the broken
curve the approximate result Eq.~4.11!.
s

-

er

ta-

At short times (kt!tc), Eq.~4.18! reduces to an exponentia
decay exp~22kt/tc!, while at long times (kt@tc) it exhib-
its a slow algebraic decayptc/(4kt). Furthermore, it fol-
lows from the preceding results that

^z2&5~112S!/3, ~4.19a!

^z2&2^z&25@~12S!/3#2. ~4.19b!

The macroscopic diffusion coefficientDx for a particle on a
chain undergoing nematic director fluctuations is now o
tained by substituting Eqs.~4.18! and~4.19! into Eq. ~3.10!,

Dx /Ds5~112S!/32@~12S!/3#2Fp4 $erf@~t/tc!
1/2#%2

t/tc
2G G ,

~4.20a!

G5
p

4

tc
t (

k51

`
~2k!!

4k~k! !2 F $erf@~2kt/tc!
1/2#%2

2k

2
„erf$@~2k11!t/tc#

1/2%…2

2k11 G . ~4.20b!

Figure 5 shows howDx varies with t/tc for the nematic
model. The shape of the curve is the same for all values oS,
although the limiting values are different. For a highly o
dered nematic phase,Dx is of course insensitive to the direc
tor fluctuation dynamics~cf. Fig. 2!.

V. CONCLUDING REMARKS

In the present work, we have examined theoretically
self-diffusion of a particle in a disordered one-dimension
geometry that fluctuates in time. Whereas spatial correlati
of finite range have no effect on the projected diffusion c
efficient Dx , temporal correlations are seen to be cruc
Our principal result Eq.~3.10! demonstrates how, on increa
ing the rate of orientational fluctuations, the ratioDx/Ds of
the projected and curvilinear diffusion coefficients increa
from ^z&2 to ^z2&.

In view of the wide applicability of diffusion and random
walk models, the present results may be useful in a variet

FIG. 5. Variation of the relative diffusion coefficientDx/Ds for
the nematic model, withtc the viscoelastic cutoff time. Even for a
nematic order parameterS as low as 0.5, the variation ofDx due to
director fluctuations is seen to be less than 5%.
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contexts. In particular, they allow experimental diffusio
data from solutions of polymers and wormlike micelles a
from amphiphilic nematic or hexagonal liquid crystals to
analyzed in terms of the orientational distribution and d
namics of the polymers or amphiphilic aggregates. As ill
trations of potential applications of this kind, we obtained
Sec. IV explicit results forDx/Ds for three different dynamic
models. When the chain dynamics are slower than the cu
linear diffusion (Dc,Ds), we found that the measured di
fusion coefficientDx is essentially the geometric mean ofDc
andDs . More elaborate dynamic models may be needed
describe real systems. For example, the exchange and R
models may be combined to incorporate the effect of a
phiphile exchange in a relatively dilute solution of wormlik
e

bb

s

-
-

i-

to
use
-

micelles. At higher concentrations, other processes, suc
chain reptation@20# and topological rearrangements@21#,
may need to be incorporated in the dynamic model.

While there are undoubtedly interesting applications
the present 1D results, the field of applications may be wi
in the 2D case. In contrast to the present exact results,
proximate methods must be used to treat diffusion on a r
dom surface@22#.
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